Course content

- (1) Introduction and syllabus
- (2) Analytical performance of biosensors.

Definition of biosensor and biochips. Examples.

Definitions of performance parameters of a biosensors such as sensitivity, selectivity and limit of detection.

(3) Surface ligand binding biosensors

Fundamental mechanisms and laws that regulate the binding of target molecules to ligands arranges on a surface.

Miniaturization of the sensing area

Peculiarities and effects of scaling the surface size

(4) Assay configurations, matrix-dependent performance

Classifications and configurations of molecular assays

Homogenous and heterogeneous

Direct, sandwich, competition, inhibition assays

Main issues and performance-limiting factors in surface sensing

Techniques for the creation of patterns of molecular ligands on the surface of a sensors-Biosensors arrays

(5) Sensor performance in presence of convection. Microfluidics systems

Physical and biochemical phenomena predominant in microfluidic sensing devices.

How to evaluate the sensing speed and performance of a sensor working in flow conditions.

- (6) Binary Diagnostic tests (screening assays)
- (7) Solid-liquid interfaces: Electrodes and Electrical impedance sensing
- (8) Dr. Gloria Porro. Bioanalytics with Electrodes
- (9) Bioanalytics with Field-effect transistors
- (10) Translation and Commercialization of biosensors. Dr. Fabien Rebeaud. Director Biomedical Sciences @ <u>Liom</u>
- (11) Dr. Erick Garcia Cordero. REA Diagnostics

Interfacing and packaging of biochips

Microfluidics, electronics and packaging interfaces to bring a biosensor to the end-user